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Abstract
We investigate optimal control strategies for state to state transitions in a model of a quantum
dot molecule containing two active strongly interacting electrons. The Schrödinger equation is
solved nonperturbatively in conjunction with several quantum control strategies. This results in
optimized electric pulses in the terahertz regime which can populate combinations of states with
very short transition times. The speed-up compared to intuitively constructed pulses is an order
of magnitude. We furthermore make use of optimized pulse control in the simulation of an
experimental preparation of the molecular quantum dot system. It is shown that exclusive
population of certain excited states leads to a complete suppression of spin dephasing, as was
indicated in Nepstad et al (2008 Phys. Rev. B 77 125315).

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Application of quantum control theory to optimize transitions
in strongly interacting quantum systems is a well-established
technology in simple two-level systems [1]. In more complex
or open systems involving many important channels it is in
general much more complicated to improve the probability
of the desired reactions and transitions. This is true in
systems as diverse as dipole blockade dynamics in cold
Rydberg gases [2] and electron dynamics in semiconductor
two-electron quantum dot systems [3]. In the latter, which
is our case, the electron–electron interaction is comparable
to other interactions in the system and cannot be neglected.
The ability to achieve fast and optimized transitions in such
systems, and a variety of others, is important for improving
present-day technology in quantum information, metrology
and quantum chemistry.

In few-electron quantum dots it is well recognized that
interactions with the substrate will induce decoherence, which
limits the ability to utilize unique quantum properties such as
entanglement. Examples of such interactions are hyperfine
and spin–orbit interactions between the quantum dot electrons
and surrounding atoms, and interactions with phonons in the
substrate lattice. As strategies to reduce decoherence, one can
either carry out experiments in systems and at temperatures
which minimize unwanted interactions, or try to develop

methods to perform the required transitions much faster than
the characteristic timescale of the decoherence. We have
previously demonstrated that intuitively selected microwave
pulses can populate both single states and more complex states
of the lowest excitation bands and we were able to further
decrease the transition time in the first case by optimal pulse
control [3].

In the present work we optimize time-dependent
transitions to more complex target states and compare
various strategies of optimization including frequency-
selective control algorithms [4]. We show that more advanced
control strategies lead to a factor of seven faster transition
times than previously reported using intuitively constructed
pulses. In the second part we address the application of
quantum control inside regions of anticrossings. This is
related to recent experiments [5, 6] which measure spin
dephasing of the system through hyperfine interactions with
the surrounding nuclear spin bath. The experiment was
simulated in Nepstad et al [7] and very good agreement
between theory and experiment was achieved. In the same
work, we further demonstrated how populating higher excited
states could be used as a method to inhibit decoherence. In
this paper we apply the technique of optimal control theory
to exclusively populate such states during initial set-up of
the experiment. Section 2 describes the theory in detail.
In section 3 we present the results, followed by concluding
remarks.
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2. Theory and methods

In this section we review and detail the numerical methods used
to study dynamics of a two-dimensional, two-electron double
dot exposed to electric and magnetic fields. This includes DC
and pulsed electric fields and weak, locally varying magnetic
fields representing the hyperfine interaction [3, 7, 8].

2.1. Model

The two-dimensional single-particle effective mass Hamilto-
nian of our system is

h0(x, y) = − h̄2

2m∗ ∇2 + 1

2
m∗ω2

[(
|x | − d

2

)2

+ y2

]
. (1)

Combined with the electron–electron interaction term, the
total field-free Hamiltonian becomes

H0 = h0(r1) + h0(r2) + e2

4πεrε0r12
. (2)

Here r1,2 are single-particle coordinates. The material
parameters may take on different values to reflect various
physical systems. In this paper we will use values compatible
with GaAs quantum dots, where m∗ = 0.067me (effective
mass), εr = 12.4 (relative permittivity). The electron mass
is denoted me. The confinement strength is set to h̄ω =
1 meV and the interdot separation to d = 130 nm, which are
realistic experimental values [9, 10]. In subsequent sections
we will introduce time-dependent terms, including interaction
with external electromagnetic fields and the spin bath of the
embedding substrate.

The eigenstates of the field-free Hamiltonian H0 are
expanded in properly symmetrized products of Hermite func-
tions. The Hermite functions are the familiar solutions of the
single-particle harmonic oscillator in two dimensions, which
are φ(x, y) = N e−m∗ω(x2+y2)/2 Hnx (x

√
m∗ω)Hny(y

√
m∗ω),

where Hn is a Hermite polynomial. The symmetrized
expansion now is � = ∑nmax

j�i ci j |i j〉, where

|i j〉 =
⎧⎨
⎩

1√
2
[φi(r1)φ j(r2) ± φ j (r1)φi(r2)] i �= j

φi(r1)φ j (r2) i = j ,
(3)

and i = {nx , ny}, j = {n′
x , n′

y} represent different sets of
quantum numbers. The symmetric and antisymmetric basis
functions correspond to singlet and triplet states, respectively.
This basis has the advantage of yielding analytic expressions
for the matrix elements of each term in equation (2). A
detailed exposition of the method can be found in a previous
paper [8]. In the present case, we obtain converged dynamics
using ny,max = 4 and nx,max = 14.

2.2. Dynamics in the eigenstate basis

In cases where the hyperfine interaction between the two
active electrons and the semiconductor nuclei surrounding the
quantum dot can be neglected, the total spin is a conserved

quantity. We then need only to consider the subspace of
symmetric basis functions, corresponding to singlet states,
choosing the + sign in equation (3). We now include a time-
dependent electromagnetic field ε(t):

Hext = −eε(t)X, (4)

where −eX = −e(x1 + x2) is the dipole operator. The
dynamics is governed by the time evolution of the expansion
coefficients:

ı h̄ċi j(t) =
∑
i ′ j ′

ci ′ j ′(t)〈i ′ j ′|H |i j〉. (5)

H is the total Hamiltonian, H = H0 + Hext. This system
of equations is integrated using an adaptive form of Adam’s
method [11]. In the singlet subspace using a basis of ∼4000
states, the calculations are reasonably fast. A considerable
speed-up may be obtained by switching to a basis consisting of
eigenstates of H0. In this case propagation times of nanosecond
duration are performed in less than a minute (on a dual-core
AMD Turion 64-bit processor). We find converged results
using a basis of 50 eigenstates. The coefficients in equation (5)
become the coefficients of the eigenstates

ı h̄ḋk(t) =
∑

l

dl(t)〈l|Hext|k〉 + Ek dk(t), (6)

where now |l〉 indicates eigenstate l with corresponding energy
El . The matrix elements of Hext are calculated based on
analytic expressions obtained in the harmonic oscillator basis.
The required matrix elements are given in detail in Popsueva
et al [8].

2.3. Hyperfine interactions

A particular source of decoherence in double quantum dot
molecules is the hyperfine interaction with the surrounding
substrate nuclei, which has a characteristic timescale of a
few nanoseconds [12]. To study this interaction from first
principles, spin couplings for ∼106 nuclear spins surrounding
the electrons must be included. The magnitude of the
interaction is consistent with a random magnetic field of a
few mT. For the timescale of the experiment (50 ns, see 2.4)
the magnetic field is taken to be constant and its spatial
dependence can, to a good approximation, be represented by
a step function [7]:

BN =
{ (

Bxex + Byey + Bzez
)
, for x � 0

0, otherwise.
(7)

The hyperfine interaction term which is to be included in
Hext is then given by

HN = γe

∑
i=1,2

Si · BN, (8)

where Si is the spin operator of electron i and γe =
g∗ e

2me
(gyromagnetic ratio) with g∗ = −0.44 (effective g

factor). In this semiclassical picture, we must consider an
ensemble of quantum dot systems, each with a different
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Figure 1. Illustration of a spin dephasing experiment in a double quantum dot molecule, as we model it in our simulations. The blue (dark)
line shows the slowly switched electric field that guides the two electrons from a single- to a double-dot configuration. During the switch,
control pulses may be applied in order to guide the electrons into excited states.

random nuclear magnetic field, and average over the ensemble
to obtain physical quantities. The ensemble is created
from a normal distribution of magnetic fields about zero,
P(BN) = 1/(2π B2

nuc)
3
2 exp(−BN · BN/2B2

nuc) [13]. Bnuc

can be determined by experiments and is of the order of
1 mT [10]. The interaction term induces couplings between
the singlet and triplet states and between the different triplet
states, necessitating the inclusion of both subspaces in the
calculations. Details of the matrix elements involved can
be found in appendix A. We remark that other types
of interactions with external degrees of freedom, such as
interactions with electron spins or phonons, can be introduced
formally in the same way.

2.4. Dynamics in the adiabatic basis

Experimental studies of spin dephasing in quantum dots
require preparation of two electrons in the singlet ground state.
In a recently reported experiment by Petta et al [5], this is
achieved by adjusting the gate voltage, creating an electric field
over the double dot, and deforming the confining potential until
at large field strength it becomes essentially a single dot, as
illustrated in figure 1. The electrons are then allowed to tunnel
into the trapping region, forming a singlet state. Reversing the
gate voltage slowly guides the electrons into the ground state of
a delocalized double-dot configuration. The system is allowed
to evolve here for ∼50 ns during which interaction with the
surrounding spin bath takes place. Readout of the singlet
state population, which gives the degree of spin dephasing, is
performed by once more tuning the gate voltage to a single-dot
configuration.

To simulate the experiment, the one-center basis approach
as described above is unsuitable, as a very large number of
basis states is required to accurately represent the wavefunction
when the electric field is large. In addition, including the
triplet states adds a factor of four to the basis size, making
the calculations prohibitively time-consuming. Even switching
to the diabatic basis, also described above, yields lengthy

calculations. However, we observe that the energy spectrum
as a function of electric field strength displays well-separated
states with clear anticrossings. These considerations lead
us to select instead an adiabatic basis approach, where the
wavefunction is expanded in eigenstates of the instantaneous
electric field:

�(r1, r2, t) =
∑

k

ak(t)θk(r1, r2; ξ) ⊗ |S〉, (9)

where |S〉 refers to either a symmetric (triplet) or antisym-
metric (singlet) spin function. Note that the electric field is
time-dependent, ξ = ξ(t), but we have dropped the explicit
reference to t in order to simplify notation. The governing
equations for the coefficients, derived in appendix B, are

h̄ȧ(t) = (−eξ̇K(ξ) − ıε(ξ)
)

a(t). (10)

This expression is an equivalent reformulation of the TDSE.
The anti-Hermitian matrix K(ξ) is computed for a set of
electric field values, {ξm}, using the numerically obtained
eigenstates and eigenvalues together with analytical matrix
elements of the symmetrized harmonic oscillator functions
|i j〉, defined in equation (3):

Km
kl = 1

εm
k − εm

l

∑
i j

∑
i ′ j ′

cm
i jkcm

i ′ j ′l〈i j |X |i ′ j ′〉. (11)

The index m refers to the electric field points and X = x1 + x2.
Since the explicit time dependence in equation (10) is only

found in the scalar function ξ̇ (t), the matrix elements need only
be computed once, speeding up the time integration. Only ξ̇ (t)
must be computed during integration, but this is inexpensive.
As the numerically computed basis set is not continuous in ξ ,
we use a simple low-order polynomial interpolation between
the ξ grid points where required by the integrator. For a
sufficiently fine mesh of grid points the interpolation will be
very accurate. We would like to stress that the adiabatic
basis expansion above is in terms of the slowly varying
electric field used to switch between the single-and double-dot
configuration, and the switching time is a few nanoseconds.
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2.5. Optimal control

Quantum control may be broadly divided into two sub-
fields: the experimental closed loop approach and the
computational approach (optimal control theory, OCT) for
obtaining controls. The closed loop approach was originally
suggested by Judson and Rabitz [14] in the context of laser
control of chemical systems. Improvements of the method
are suggested in [15, 16]. In this approach the target is
chosen to be an experimentally measurable quantity, e.g. the
mass ratio of two competing chemical products [17]. The
OCT approach is based on solving iteratively the Schrödinger
equation while updating certain control parameters. In the
basic Krotov approach as presented here, the choice of initial
and final (target) state is essential to the optimization scheme.
In Palao and Kosloff [18], a generalization is presented to
optimize unitary transformations that are independent of the
initial state.

Most algorithms aim to maximize performance function-
als with no requirement on the structure of the controls apart
from minimizing the energy. Therefore the controls obtained
are generally too oscillatory for existing laser apparatus to
produce [19]. This has, so far, prevented the computational
approach from being used to design real pulses for laboratory
laser experiments. There have been several attempts in theory
to restrict the domain of allowed controls, noteworthy Hornung
et al [20], Von Winckel and Borzı́ [21] and Borzı́ et al
[22]. In a manner similar to the approach presented here,
Werschnik and Gross [23] introduce filtering of the Fourier
components by manually projecting out unwanted frequency
components. While the controls produced by OCT are
becoming less complex, experimentalists develop increasingly
more advanced pulse shapers capable of producing pulses with
a wide range of frequency components. Recently Silberberg
demonstrated control of the polarization and shape of a laser
pulse on the scale of femtoseconds [24].

We now describe the iterative Krotov method [25] for
optimizing optical transitions in quantum systems [26]. In
the following we will describe and discuss modifications to
this scheme. In general the method aims to maximize the
expectation value of a positive semi-definite operator by means
of an external field while minimizing the field energy. The
time evolution of the system in which we want to optimize
transitions is described by the time-dependent Schrödinger
equation:

ı h̄
∂

∂ t
�(r1, r2, t) = [H0 − eε(t)X ] �(r1, r2, t), (12)

where ε(t) is an electric field and X = x1 + x2 as before.
We have chosen to use ε(t) for the electric field whenever we
refer to (optimized) pulses. H0 is the field-free Hamiltonian
in equation (2). Our goal is to apply control theory to find
optimal pulses for population transfer from an initial state
�i = �(t = 0) to a target state �t . The states are preselected
and the pulse duration is fixed to t = T . The optimization
is done by maximizing the expectation value of a projection
operator, |�t〉〈�t |, that is, maximizing the functional J1[�] =
〈�(T )|�t〉〈�t |�(T )〉 = |〈�t |�(T )〉|2. The requirement that

the field intensity should be as small as possible is achieved by
minimizing a second functional, J2[ε] = ∫ T

0 dt λ(t)[ε2(t)],
where the predefined function λ(t) acts as a penalty factor,
which can be used to impose an envelope on the electric field.
We will use λ(t) = λ unless otherwise stated. In each iteration,
the updated control field is found as a solution to

∇ Ja[ε] = 0, Ja = J1 − J2. (13)

We proceed to sketch a simple implementation of the
Krotov iteration algorithm. The time interval, [0, T ], is divided
into fixed-length intervals ti on which ε(t) is taken to be
constant, ε(ti) = εti , ti ∈ [0, T ]. The first step is to integrate
the initial value problem of equation (12). For the first iteration,
I = 0, we use some initial guess for the control, ε0(ti ). The
choice of initial control is by no means immaterial, as we
will see later. After propagating forward, calculate the yield,
|〈�t |� I (T )〉|2, where � I (T ) is the final state. If the desired
yield has been reached, the iterations are terminated. If not,
solve the terminal value problem:

χ̇ = − ı

h̄
[H0 − eε(t)X ] χ, with

χ(T ) = |�t〉〈�t |� I (T )〉,
(14)

and obtain χ I (t). The updated control components ε I+1
ti are

obtained while integrating the TDSE, equation (12), again
(step-wise) with � I+1(0) = �i: for the first time interval
choose ε I+1

t0 = −Im〈χ I (0)|eX |� I+1(0)〉/λ, and with this
ε I+1

t0 integrate to find � I+1(t1). Repeat the process for the next
time interval with

ε I+1
ti = − Im〈χ I (ti )|eX |� I+1(ti )〉

λ
. (15)

The entire procedure is repeated until the maximum number of
iterations or the desired yield is reached. Using the eigenstates
of H0 as basis makes it possible to perform several hundred
iterations in a few hours.

The expression for εti , equation (15), is a zeroth-order
approximation to the update equation given to full order
in Degani et al [4] Although the simple iteration method
described above is not guaranteed to converge monotonically,
it works quite well for the system at hand. In fact this feature
might even be desirable, as it acts as a ‘shake-up’ of the
numerical calculations: the iteration scheme finds only local
maxima and thus adding small perturbations to the solution
through having a non-monotonic convergence might lead to
even better optimal controls. Indeed, this effect was observed
when performing an additional update of the control during
the backward integration, cf equations (14). In this case the
convergence is smoother but often stagnates around a lower
maximum yield. However, we would like to point out that
the technique of using backward updates has proven to be
quite effective in simpler systems, acquiring extremely high
yields [27, 4]. Tests using a basis of only a few states confirmed
this also in our system.

The method as presented above has another restriction
in that it does not discriminate between possible controls,
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Figure 2. The two-electron double-dot spectrum as a function of electric field strength (left) and details of the spectrum at zero electric field
(right). Solid lines (blue) are singlet states, dashed lines (red) are triplet states. The arrows indicate transitions referred to in the text. Only
states of even y parity are shown.

except favoring those of low intensity. This often leads to
quite complicated controls that are difficult to produce in
an experimental set-up. As mentioned in Werschnik and
Gross [23], a desired structure can be enforced by projecting
the control onto a preferred subspace in every iteration. Instead
of this brute force strategy, a modified functional, Jb, can be
introduced [4] which favors low energy controls with a desired
structure. This is achieved by selecting a set of ‘good’ controls
spanning the desired subspace of the full control space. The
‘bad’ control subspace is then defined to be the orthogonal
complement of the ‘good’ subspace. The weighted terms of the
projection of the control onto the ‘good’ and ‘bad’ subspaces
are added to the functional Ja . The new functional to maximize
is

Jb[ε] = 〈�(T )|�t〉〈�t |�(T )〉
− dt uT (λI + λ1�good + λ2�bad)u, (16)

where the λ term is J2 and �good/bad are projection operators
onto the ‘good’ and ‘bad’ control subspaces, respectively. Here
we have used a set of frequencies corresponding to transitions
between the 10 lowest bound states as our space of ‘good’
controls. More specifically the space of ‘good’ controls is
defined as the span4 of fi j , i = 0, . . . , 9, j < i :

fi j (tk) = sin2(π tk/T ) cos((Ei − E j)tk), t ∈ [tk, tk+1]
(17)

where the sin2 envelope is chosen to encourage a gradual
pulse turn-on and turn-off. Optimizing Jb instead of Ja guides
the control algorithm in the direction of controls with desired
frequencies. This resembles the experimental set-up in which
a pulse shaper algorithm constructs a pulse using available
frequencies. We would also like to stress that imposing
constraints on the structure of the pulse does not necessarily
compromise the yield of the transition. On the contrary, we

4 As explained in Degani et al [4] the values of the fi j are written as
columns of a matrix F . Then the columns of the matrix orth(F) form an
orthonormal basis for the subspace of good controls (orth is a MATLAB and
SciPy command). Thus �good = orth(F) orth(F)T and �bad = I − �good. In
the present paper SciPy (www.scipy.org) was used, where the orth command
is based on the singular value decomposition.

obtain improved yields in several cases when applying the
structure functional, see also [4].

3. Results

We here present results of calculations based on the control
schemes outlined in section 2, with respect to optimizing
simple and combined state to state transitions in the double-dot
system. This section is structured as follows. First we review
the electronic spectrum and a classification of the electronic
states following a diagonalization of the Hamiltonian. In
section 3.2 we consider spin conserving electromagnetically
driven transitions in the singlet subspace. Section 3.3 focuses
on transitions during electric gate switching, indicated in
figure 2 at the point of anticrossing (dashed black circle). In
the latter case, HN from equation (8) is included in Hext which
allows for singlet–triplet state transitions.

3.1. Electronic spectrum and state characterization

The eigenvalue spectrum in figure 2 is shown as a function
of electric field strength (left). As an initial strong negative
electric field is decreased, the state energies are seen to
increase linearly and a number of anticrossing regions appear
between states with the same symmetry. The physics of
the anticrossings normally involves strong state mixing. For
example, the ground state in the circled area changes from
a state containing essentially both electrons in one dot to
a covalent two-center state as the anticrossing is traversed.
The molecular states at zero electric field (right panel) were
classified and labeled in Popsueva et al [8].

In the present calculations we employ electric fields
linearly polarized in the x direction. This couples states which
have different x parity and equal y parity. Figure 2 shows only
states with the same y parity as the ground state. The ground
state |0〉 is at asymptotically large dot separation identical to
a linear combination of two harmonic oscillator ground states
with one electron in each dot, φnx ,ny (x, y). The two linear
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combinations define the spatial part of the singlet (+) and
triplet state (−):

φ0,0(x1 − d/2, y1)φ0,0(x2 + d/2, y1) ± φ0,0(x1 + d/2, y1)

× φ0,0(x2 − d/2, y2). (18)

The states |1〉, |2〉 correspond to a single exciton, i.e. a
properly symmetrized linear combination where the nx

quantum numbers are raised by one in the wavefunction above.
The next set of states |5〉, |6〉 are ionic states which, as the dot
separation tends to infinity, become degenerate and consist of
two-electron single-dot ground states with both electrons in the
same dot. These two states are thus spin singlets with positive
(|5〉) or negative (|6〉) reflection parity through the y axis. The
spectrum of states above |6〉 is more complex until the energy
levels are far above the value of the potential at x = 0. Then
the two-electron states of a single two-dimensional harmonic
oscillator are reproduced.

3.2. Spin-conserving dynamics in the singlet subspace

We first neglect spin interactions and restrict our attention to
dynamics in the subspace of singlet states driven by time-
dependent optical (THz) electromagnetic fields. From the
ground state, transitions to the states |2〉 and |6〉 are dipole-
allowed, while the state |5〉 can be reached via |2〉. We
will study each of these transitions, finding that optimization
procedures can produce very short pulses which achieve almost
unit probability transfer.

3.2.1. Single state transitions. For the |0〉–|2〉 transition, we
find that an ‘intuitive’ sine-squared envelope pulse tuned to
the resonance frequency will transfer 98.7% of the population
in 237 ps. The population of |2〉 during the pulse is shown
in figure 3, labeled I (black curve). In a first attempt at
optimizing this transition [3], we found that 96.5% transfer
could be achieved in 111 ps, using an energy penalty functional
and amplitude cutoff (II—gray curve). With the present
approach, the same functional (Ja) provides better results,
transferring 98.6% of the population in only 67 ps (III—red
curve). Replacing the energy functional Ja with the structure
functional Jb gives a slightly better final population of 99.3%
(IV—blue curve).

With transition time decreased to 67 ps, the population
transfer proceeds in an irregular manner for the energy
penalty optimized pulse, III. This is due to the population
of intermediate excited states which can be used specifically
or suppressed in the advanced optimization scheme: during
the pulse we find that as much at 70% of the population is
transferred to highly excited states (>10). Direct transitions
to these states from the ground state may be discouraged by
using the structure penalty. Switching to the functional Jb,
the resulting pulse causes population of higher excited states
to reduce to 20% (IV). The high numbers are mainly due to the
13th excited state, which has a strong coupling to the second
excited state. The resonance frequency of this transition is
close to that of the |0〉–|2〉 transition, which is included in the
space of good controls. Disregarding the population of |13〉,
the population of the remaining higher excited states is 31%

Figure 3. Population of the excited state |2〉 (starting from |0〉) as a
function of time for four different pulses. Black line (I): ‘intuitive
pulse’, α(t) cos(ωt), where ω = (E2 − E0)/h̄ = 1.5 THz and α(t) is
a sin2 envelope. Gray line (II): optimized pulse using the functional
Ja, duration is 111 ps. Red line (III): optimized pulse using the
functional Ja, duration is 67 ps. Blue line (IV): optimized pulse
using the functional Jb, duration is 67 ps. The optimization was done
using �t = 0.28 ps.

and 2.7% for the Ja and Jb optimizations, respectively. The
plateau structure in the population of |2〉 during the two short
pulses (III and IV) is due to the transient population of |13〉.

3.2.2. Charge localization. Previously we demonstrated
how charge localization in one dot can be achieved in less
than a nanosecond by applying weak, resonant pulses on the
system [3]. The charge localized state (CLS) is a combination
of the states |5〉 and |6〉 in the third energy band of the spectrum
exhibiting ionic structure, in analogy to ionic states in diatomic
molecules. At large interdot separation the two states resemble
the asymptotic states:

|g(r1L, r2L)〉 ± |g(r1R, r2R)〉 (19)

where |g〉 refers to the shifted ground state of a single two-
electron dot. Creating an equally weighted linear combination
of these states will cause the two electrons to oscillate between
localization in the left and the right dot with a period of
180 ps, inducing an AC current over the dot. This is illustrated
in figure 4, where the upper panel shows the expectation
value of X = x1 + x2 as a function of time, its value
oscillating between the two minima of the double-dot potential.
Also shown is the integrated one-electron density of the CLS
at certain times during field-free time evolution, ρ(x) =∫

dy1 d2r2 |�(r1, r2)|2. In the intuitive scheme the transition
to the CLS is achieved via an intermediate transition to the
second excited state in the second energy band (labeled |2〉 in
figure 2). This is necessary because the lowest ionic state has
positive x parity and cannot be reached from the ground state
directly, due to selection rules. The three transitions involved
are indicated by arrows in the rightmost part of figure 2.

Figure 5 (second panel from top) shows the eigenstate
population as a function of time during the sequence of
resonance pulses and during the optimized pulse (bottom

6
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Figure 4. Field-free time evolution of the charge localized state.
Upper panel: time evolution of the expectation value of X = x1 + x2.
Lower panel: single-electron density averaged over the y coordinate
at three different times during the time evolution: t = 0 ps (left),
t = 45 ps (center) and t = 90 ps (right). The red markers indicate the
value of 〈X〉 at the three times. The confinement potential is
indicated by the dashed lines.

panel). The respective pulses are shown above. The first two
pulses in the uppermost panel use a sin2 envelope whereas the
last pulse uses a sin2 ramp-on over 10 oscillations.

The optimized pulse was obtained using the functional Ja

with final time T = 117 ps and a maximum of 300 iterations.
We used λ(t) = 1/ sin2(π t/T ) to ensure that the pulse is zero
at t = 0 and T (note that λ is a penalty factor, making the
penalty for a non-zero field at the endpoints infinite). As seen
from the population during the optimized pulse, the strategy of
using the second excited state as an intermediate transition is
also automatically taken advantage of by the optimized pulse.
However, the detailed dynamics is much more involved. The
total transition time has been brought down from 852 to 117 ps
using the optimized pulse and the population of the target state
has been improved from 97.2% to 99.8%. An important feature
to note is that, by using a defined target state, we are also able
to selectively choose the configuration of the charge localized
state which is determined by the relative phase between the
ionic states. We have used a target state defining the two
electrons in the left dot at the end of the pulse. The charge
oscillations of the CLS has a period of ∼180 ps, and so the
relative phase evolution of the ionic states is important during
the propagation. In this sense the optimal control scheme
is stricter compared to the intuitive approach, where we did

Figure 5. Driving pulse shapes and strengths (upper and third panel)
and state probabilities (second and lower panel) for the transitions to
a charge localized state during two different approaches. The two
upper panels describe a sequence of intuitive pulses [3] and the two
lower panels show optimized results based on the Ja functional
(equation (13)). Transient populations are plotted for the ground state
(black |0〉 curves), the second excited state (green |2〉 curves) and the
two ionic states (red |5〉 and blue |6〉 curves). The white line in the
upper panel is a close-up of the last pulse. The final times are 852
and 117 ps. The optimization was done using �t = 0.028 ps.

not control the final configuration of the electrons, only the
population probability of each eigenstate.

In figure 6 we have applied Jb to optimize the transition
to the charge localized state. The results for T = 67 ps are
compared with optimization using the Ja functional. Results
for Jb and Ja are shown by the blue and red curves (dashed
and solid), respectively (all panels). The upper panel shows
the convergence of the yield (projection of the final state

7
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Figure 6. Properties of the optimization routines using only energy
penalty (solid red curve) and including structure penalty (dashed blue
curve) in the transition to the CLS. The upper panel shows the
convergence of the yield as a function of iteration number. The
middle panel shows the optimal pulses obtained in the two
optimizations. The dashed gray curve in the background shows the
initial starting field, 0.01 sin2(π t/T ) cos(0.01t). The bottom panel
shows the frequency spectrum of the two pulses. The final time is
67 ps and the timestep used is 0.28 ps.

onto the target state) as a function of iteration. Additional
iterations did not produce higher yields. The solid red curve
(upper panel) is fluctuating strongly and the final pulse is also
somewhat irregular. In this case we applied a low pass filter to
the final pulse to get rid of very high frequency components,
caused by numerical noise. We checked that removal of
these components did not affect the final yield and dynamics.
In general, we experience greater difficulties in achieving
converging results using only the energy penalty, and the yield
often converged to zero. The maximum yields for the two

Figure 7. Pulses and probability for populating the |C L S〉 state as a
function of time with a constant initial field (lower panel). Population
as a function of time is plotted in the upper panel for the ground state
(black |0〉 curve), the second excited state (green |2〉 curve) and the
two ionic states (red |5〉 and blue |6〉 curves).

methods were 94.3% (Ja) and 83.3% (Jb). While the structure
penalty strongly limits the presence of unwanted frequencies
in the optimized pulse, population of excited states beyond the
10 lowest still occurs. This is again related to the existence
of resonant transitions to higher excited states matching the
frequency of the desired transitions. The population of excited
states (>13) is for both methods ∼20%.

We have noticed in all our calculations that the pulse
produced by the optimal control algorithm is sensitive to the
choice of initial field. An example of this is shown in figure 7.
Here, we start the iterations using a constant initial field (gray,
horizontal curve) and consequently obtain a rather different
optimal pulse compared with the one in figure 6 (dashed blue
curve, middle panel), where a sin2 enveloped pulse was used
(gray curve). In this case we see that the optimized pulse has
retained much of its initial DC component. The maximum
population of the target state is 98.6% after 419 iterations.
In this case the population of highly excited states during the
pulse is considerably less, with <10% in the 24 highest states.
Optimization using only the energy penalty in this case gave
a very short, high frequency and high intensity pulse, with a
resulting yield of only ∼60%. These examples illustrate the
limitations of using only energy penalty when the propagation
time becomes short, and how adding structure penalty can
consistently guide the control towards a wanted frequency
space.

8
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We end this section with some comments on the issue of
using y-polarized fields. The transition to the lowest ionic state
(with positive x parity) could in principle have been achieved
using a y-polarized field and the third excited state in the
energy spectrum, which has positive x parity and negative
y parity. Note that the transition to the upper ionic state
(with negative x parity) can only be reached via x-polarized
fields. Using this scheme one could perform the two operations
simultaneously with weak fields.

There are, however, properties of the spectrum obstructing
the use of y polarization in this system. In the case of the CLS,
the coupling between the third excited state and the lowest
ionic state is virtually zero. Moreover, from the lower energy
bands, there exist a multitude of strong couplings to states
further up in the spectrum, precluding selective transitions
to lower lying states. Numerical calculations confirm that
selective state population is impractical using y-polarized
fields.

This feature of the double-dot spectrum is related to the
symmetry of the potential, particularly in the y direction. As
noted in an earlier work [3], and as we will also see manifested
later on, optical manipulation in this two-electron molecule
system is actually restricted by the degree of symmetry in the
potential, and control would be more easily achieved in slightly
asymmetric dots. Similarly, we expect that y-polarized fields
could be more useful in anharmonic systems.

3.3. Optimized transitions and spin interactions

In a previous paper [7], we studied the effects of spin dephasing
in the quantum dot system, modeling the experiment described
in section 2.4 and replicating experimental conditions as
accurately as possible. We observed that, when using ultrafast
electric switching (1 ps) through the anticrossing (black dashed
circle in figure 2), large population transfer from the ground
state to the second energy band resulted. The decoherence
is largely suppressed for those states, and when the system
was switched back to the single-dot configuration, 95% of the
initial singlet population was regained. The suppression is
explained by the fact that, at zero electric field, the singlet–
triplet energy splitting is approximately 100 times greater for
the second excited singlet state compared with the ground
state. The 5% loss was caused by some of the population
vanishing to higher excited states during passage through the
anticrossings.

By applying optimal control schemes in combination with
the adiabatic electric switch, the transition to excited states
may be achieved with near 100% probability. An optimized
pulse applied at the point of anticrossing will force a non-
adiabatic transition and by targeting the desired excited state
explicitly we minimize loss to other states. Figure 8 shows
such a transition between the two lowest eigenstates using an
optimized pulse. The optimized pulse was obtained using the
structure functional Jb together with λ(t) = 1/ sin(π t/T ), and
has a duration of T = 67 ps. In this case the population
of other states during the pulse is completely negligible and
the final population of the second excited state is as high as
99.9%. After the pulse, the system is adiabatically switched

Figure 8. The optimized pulse shape (lower panel) and transient
population (upper panel) of the two states involved in the circled
anticrossing of figure 1. The gray area indicates a long period (50 ns)
of adiabatic development of the states, before the dynamics is
reversed and brought back to the ground state with the same pulse,
see the text for details.

to the delocalized double-dot configuration, where the system
is left to interact with the spin bath for 50 ns. Reversing
the adiabatic switch and optimized pulse procedure, we find
that 99.3% of the ground state population is regained. This
is in sharp contrast to the original ∼50% loss of coherence
found in [5]. Using OCT to suppress decoherence is here done
implicitly by targeting preselected states that experience less
hyperfine interaction. The Krotov method may also be used
explicitly to fight decoherence, as suggested by Mohseni and
Rezakhani [28].

4. Summary and conclusion

In this work we have demonstrated to what extent quantum
control strategies can be applied to obtain the required
transitions between electronic states of two-electron quantum
dot molecules. Such transitions are non-trivial partly due to the
strong electron–electron interaction, but also the large number
of coupled states induced by the external fields. Nevertheless,
the calculations have shown that single states and superposition
of states may be reached with close to 100% probability.
It has been shown that weak pulsed electric fields in the
THz regime can induce transitions from the ground state to
a preselected excited state within 100 ps. When applying
advanced control strategies, a speed-up of more than seven
times the transition time using straightforward intuitive pulses
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is gained. Such control strategies also have the advantage of
returning a final pulse consisting of experimentally relevant
frequencies.

In the case of interactions with slowly varying external
fields, which have been applied in experiments, we have shown
that complete transitions at anticrossings can be obtained.
This is a realistic implementation of a fully diabatic time
development, which in the Landau–Zener model requires
infinitely fast transitions. We also showed that the hyperfine
interaction in the excited states is unimportant at the considered
time scales as opposed to in the ground state. This leads us
to conclude that advanced engineering of tailored pulses as
here described appear as a possible route to accessing and
manipulating electronic states in experiments [29, 30].

Appendix A. Matrix elements for the hyperfine
interaction

In this appendix we give details of the matrix elements for
the hyperfine interaction in equation (8) using the symmetrized
basis of Hermite functions. The spin states are as usual

Triplet

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

χ↑(1)χ↑(2) = |T+〉
χ↓(1)χ↓(2) = |T−〉

1√
2

(
χ↑(1)χ↓(2) + χ↓(1)χ↑(2)

) = |T0〉
(A.1)

Singlet

{
1√
2

(
χ↑(1)χ↓(2) − χ↓(1)χ↑(2)

) = |S〉. (A.2)

The singlet has corresponding symmetric spatial functions of
the form

|�I (r1, r2)〉 ⇒
⎧⎨
⎩

|i i〉 = φi(r1)φi (r2)

|i j〉 = 1√
2
(φi(r1)φ j (r2) + φ j (r1)φi(r2)).

(A.3)
The triplet has corresponding antisymmetric spatial functions
of the form

|�J (r1, r2)〉 ⇒ |kl〉 = 1√
2

(φk(r1)φl(r2) − φl(r1)φk(r2)) .

(A.4)
The φi(r)s are as before two-dimensional Hermite functions
with i = {nx, ny}. Recall also the representation of the
effective nuclear field, equation (7):

BN =
{ (

Bx ex + Byey + Bzez
)
, for x � 0

0, otherwise.
(A.5)

Matrix elements for the |S〉 ←→ |T 〉 coupling

〈�I (r1, r2); S|ĤN |�J (r1, r2); T 〉. (A.6)

The first case is

〈i i ; S|
∑
i=1,2

Si · BN|kl; T 〉

= 1√
2

∑
xi =x,y,z

{δil〈i |Bxi |k〉 − δik〈i |Bxi |l〉} (A.7)

×〈S|S1xi − S2xi |T 〉, (A.8)

and the second possibility is

〈i j ; S|
∑
i=1,2

Si · BN|kl; T 〉 = 1
2

∑
xi =x,y,z

{δ jl〈i |Bxi |k〉

+ δil〈 j |Bxi |k〉 − δik〈 j |Bxi |l〉 − δ jk〈i |Bxi |l〉} (A.9)

× 〈S|S1xi − S2xi |T 〉. (A.10)

Matrix elements for the |T 〉 ←→ |T 〉 coupling. The only
possibility is

〈�I (r1, r2); T |ĤN |�J (r1, r2); T 〉
〈i j ; T |

∑
i=1,2

Si · BN|kl; T 〉

= 1
2

∑
xi =x,y,z

{δ jl〈i |Bxi |k〉 − δil〈 j |Bxi |k〉

+ δik〈 j |Bxi |l〉 − δ jk〈i |Bxi |l〉} (A.11)

× 〈T |S1xi + S2xi |T 〉. (A.12)

The spin-coupling elements 〈S|S1xi − S2xi |T 〉 and
〈T |S1xi + S2xi |T 〉 for xi ∈ {x, y, z} are calculated
straightforwardly using the properties of the spin operators.
Their values are listed below for the different cases numbered
from a to j . The spatial matrix elements, equations (A.7)–
(A.9) and (A.11), are composed of simple, separable integrals
over the Hermite basis functions. Since B = 0 over the left dot
the integration in the x direction runs over half the interval:∫ ∞

0
dx

∫ ∞

−∞
dy Hnx (x)Hny(y)Hmx (x)Hmy(y) e−(x2+y2).

(A.13)
As the Hermite functions have well-defined parity we can use
the values of tabulated integrals over the whole interval. Note
that the expression above has been stripped of all factors and
constants for readability. Denoting the matrices made up by
the spatial integrals above, by S, S − T and T respectively, we
can set up the following matrix:

a = 0 f = 1√
2

(
Bx + i By

)
b = Bz g = 1√

2

(
Bx − i By

)
c = 1√

2

(
Bx − i By

)
h = −Bz

d = − 1√
2

(
Bx + i By

)
i = 0

e = 0 j = Bz.

In the Hermite basis each square in the matrix represents
a ∼4000 × 4000 matrix. Again we convert to the adiabatic
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eigenfunction basis at each electric field strength in order to
keep the total size of the matrix small (4n × 4n, n = 50).

Appendix B. Derivation of the adiabatic equations

The adiabatic basis states θk , depending parametrically on
the time-dependent electric field ξ , are determined from the
eigenvalue equation:

(H0 − ξ X)θ(r1, r2; ξ) = ε(ξ)θ(r1, r2; ξ). (B.1)

Here, and in the following, we switch to units in which h̄,
e, me and c are all unity in order to improve readability.

Inserting the expansion of the wavefunction, equation (9),
into the TDSE:

ı
∂

∂ t
�(r1, r2, t) = (H0 − ξ X)�(r1, r2, t), (B.2)

and projecting onto each 〈θk | gives

ȧk(t)= −
∑
j �=k

a j(t)〈θk | ∂

∂ t
|θ j〉 − ıεk(ξ)ak(t). (B.3)

We now rewrite the coupling elements in a form more
useful for numerical calculations by taking the time derivative
of equation (B.1) for a given eigenstate |θ j〉, and projecting
onto another state 〈θk |:
〈θk |(H0 − ξ X)

∂

∂ t
|θ j〉 − 〈θk |∂ξ

∂ t
X |θ j 〉

= 〈θk |∂ε(ξ)

∂ t
|θ j〉 + ε j(ξ)〈θk | ∂

∂ t
|θ j〉. (B.4)

Rearranging, and noting that the first term on the right-
hand side is zero, we obtain an expression for the time
derivative coupling:

∂ξ

∂ t
〈θk |X |θ j 〉 = (

εk(ξ) − ε j(ξ)
) 〈θk | ∂

∂ t
|θ j〉. (B.5)

Upon insertion into equation (B.3) we arrive at

ȧk(t)= −ξ̇
∑
j �=k

〈θk |X |θ j〉
εk − ε j

a j(t) − ıεk(ξ)ak(t), (B.6)

where the sum over j extends over sufficiently many adiabatic
eigenstates to achieve converged results.
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